Journal of Organometallic Chemistry, 236 (1982) 385–394 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DURENE-RHODIUM(I) COMPLEXES. CRYSTAL STRUCTURES OF THE COMPLEXES [Rh(durene)(diolefin)]ClO₄ (diolefin = tetrafluorobenzobarrelene or trimethyltetrafluorobenzobarrelene)

L.A. ORO *

Departamento de Química, Facultad de Ciencias, Universidad de Santander, Santander (Spain)

C. FOCES-FOCES, F.H. CANO and S. GARCIA-BLANCO Departamento de Rayos X, Instituto Rocasolano, C.S.I.C., Serrano, 119, Madrid-6 (Spain) (Received May 24th, 1982)

Summary

The crystal structures of [Rh(durene)(diolefin)]ClO₄ (diolefin = tetrafluorobenzobarrelene (TFB) and trimethyltetrafluorobenzobarrelene (Me₃TFB)) have been solved by standard X-ray single crystal methods. The compounds crystallize in the space groups R_3c for the unmethylated TFB compound and $P2_1/n$ for the methylated one. The cell dimensions are 25.7586(5), 17.0059(4) Å and 12.6686(6), 11.5565(3), 16.7269(8) Å, $\beta = 104.023(5)^\circ$, respectively. The refinement was taken to R values of 0.04 and 0.06, respectively. The arene in the TFB derivative has a distorted inverted boat conformation which becomes a skew one in the Me₃TFB compound. These puckering seems to be related to the tendency of rhodium(I) to achieve square-planar coordination.

Introduction

Several π -arene-rhodium(I) complexes have been structurally characterized recently [1-8]. In general, significant non-planarity is generated upon complexation to the metal. In order to obtain more information about the reasons for the different conformations and relative ring positions, we have solved by X-ray methods the crystal structures of the arene complexes, [Rh(durene)(diolefin)]ClO₄ (diolefin = TFB, Me₃TFB [9]). In these compounds two different positions of the durene relative to the diolefin moiety are observed.

^{*} To whom correspondence should be addressed at his present address: Department of Inorganic Chemistry, University of Zaragoza, Zaragoza (Spain).

TABLE 1. CRYSTAL AN	VALYSIS PARAMETERS AT ROOM TEMP	ERATURE	
Crystal data	Formulae Crystal habit size (mm) Symmetry	[Rh(durene)(TFB)]ClO4 Yellow, Transparent. Sphere. 0.57 diameter 3/m Rhombohedral RJc, Acentric	[Rh(durene)(Me3TFB)]ClO4 Yellow. Transparent. Prismatic. 0.26 X 0.07 X 0.39 2/m. Monoclinie P ² 1/n
	Unit cell determination least-squares fit Unit cell dimensions (Å)	statustical vesti 19(2), 25 s 46 reflexions 25.7586(5), 17.0059(4)	57 reflexions 12.6686(6), 11.6565(3), 16.7269(8)
	Packing: V (Å ³), Z D (g cm ⁻³), M, (F000)	9771.7(3),18 1.72,562,75,5076	g = 104.023(b) 2376.9(1), 4 1.69, 604.83, 1224
Experimental data	Radiation, technique	Cu-Kā 4-Circle PW1100 Philips-Diffractometer, Bisecting	Mo.K _ā geometry.
	Monochromator Orientation	Graphite oriented $0k0$: $\chi \sim -45^{\circ}$, $\phi \sim 359^{\circ}$ hhh: $\chi \sim -15^{\circ}$, $\phi \sim 315^{\circ}$	$0k0; x \sim 1^{\circ}, \phi \sim 96^{\circ}$ $hhh; x \sim 36^{\circ}, \phi \sim 61^{\circ}$
	Collection mode (ω/20, 1°X1° det. apertures) Total, independent data Obs. data: 2σ _c (I) Stability Absorption: faces	0 ≤ 25 1,30, 1 min/reflex, 1963 1791 T'wo reflexions every 90 min. N	0 ≤ 65 1.50, 1 min/reflex. 4170 2764 c variation. ±010, ±102, ±102 e e0.0.0.43-0.799
Solution and refinement	μ-Min., Mx. transmission	82,24,	1108.
	Solution mode Refinement mode Final shift error Parameters: no. of variables,	Patterson Least-square on F's, Observed reflexions only, 4 b 0.24 368 1423 4 9	locks for the final L.S. 0.15 420 2344 6.6
	ω -scheme ratio of freedom ΔF ΔF Max, thermal values (\mathbb{A}^2) R, R_{u} Atomic factors	Empirical as to give no trends in $(w\Delta^2)$ vs, (0.63 $U_{33}(02) = 0.72(9)$ 0.040, 0.045 [11], International Tables for X-ray Crystallograp dispersion applied for Rh and Cl.	Y_0 or $\sin 0/\lambda$) 0.57 $U_{33}(01) = 0.32(2)$ 0.060, 0.062 hy: Neutral atoms; Real part of anomalous

Experimental

The complex [Rh(durene)(Me₃TFB)]ClO₄ was prepared as previously described [1]. The novel derivative [Rh(durene)(TFB)]ClO₄ was prepared analogously by treating [RhCl(TFB)]₂ [9] with AgClO₄ and durene. The yellow complexes were characterized by conventional methods [1,2]. All the relevant crystal structure data and procedures are listed in Table 1.

Results

Crystal structure parameters are given in Table 1. The final observed and calculated spectra were tested by δR_w plots [12], giving the values shown in Table 2. Figure 1 displays the atomic numbering. The most relevant bond distances, angles and selected torsion angles are shown in Tables 3 and 4, whilst final atomic coordinates are listed in Tables 5 and 6. The geometry of both molecules is compared by half normal probability plots of the interatomic dis-

Fig. 1. A view of [Rh(durene)(Me₃TFB)]ClO₄ showing the atom numbering.

TABLE 2

388

Туре	$ F_0 $ vs. $ F_c $ full normal	d(Me3TFB) vs. d(TFB) half normal
Total points	1834	108
Excluded	3	5
Total R	0.041	0,015
Slope	0.859(1)	1,765(13)
Intercept	0.040(1)	0.026(12)
Correlation	0.999	0,997
Dp. Max.	±3.0	3.5

NORMAL PROBABILITY RESULTS

tances (see Table 2). A list of structure factors and thermal parameters can be obtained from the authors.

Discussion

The Rh–C(arene) distances (Table 3), together with the values of the torsion angles within the ring (Table 4) and the deviations from the least squares plane of the ring atoms (Fig. 2 and 3) show that in the TFB derivative the durene ligand has a distorted inverted boat conformation [2], whilst in the Me₃TFB analogue the ring adopts a skew conformation. This is analogous to the conformations present in the 1,4-C₆H₄Me₂ derivatives [1,2]. In Table 7 we show an analysis of the conformations of the arene ring in rhodium complexes of the type [Rh(arene)(diolefin)]ClO₄, according to the puckering parameters (Cremer and Pople [13]).

In the complexes described in this paper, and in other related compounds [1,2], the two carbon atoms of the ring opposite to the olefinic bonds are (Continued on p. 392)

Fig. 2. Rhodium coordination as seen perpendicular to the arene ring, including deviations (Å) from the mean six-membered plane of the arene ring. Olefinic carbons of the coordinated TFB and Me₃TFB ligands are also included.

ļ

	(°) and angles (°)
TABLE 3	BOND DISTANCE

	TFB	MegTFB		TFB	MegTFB
Rh-C(1)	2,331(8)	2,311(9)	C(1')-C(2')	1.396(35)	1 374/11/
Rh-C(2)	2.224(9)	2.282(10)		1 208/212	1 961/10/
Rh-C(3)	1006 0			(10)070'1	(NT)10P.1
	(1)0707	(11)100'7	c(1) - c(11)	1,406(17)	1.378(9)
	2,326(10)	2,309(9)	C(2')-C(3')	1.321(50)	1.382(13)
Kn-C(b)	2,249(10)	2,295(9)	C(2')F(2)	1.340(20)	1.341(9)
Rh—C(6)	2,346(9)	2,359(8)	C(3')-C(4')	1.420(22)	1.365(11)
$\mathbf{R}\mathbf{h} - \mathbf{C}(\mathbf{G})$	2,137(9)	2.162(7)	C(3')-F(3)	1.358(28)	1.343(10)
$\mathbf{k}\mathbf{h} - \mathbf{c}(\mathbf{T})$	2,151(8)	2.124(8)	C(4')-C(12')	1,399(21)	1.350(11)
Rh - C(9')	2.139(10)	2.101(6)	C(4')—F(4)	1,299(25)	1.353(10)
Rh-C(10)	2,138(12)	2,166(7)	C(5')-C(6')	1,546(19)	1.517(10)
C(1) - C(2)	1.421(13)	1.406(15)	C(5')-C(10')	1.539(16)	1.524(12)
C(2)-C(3)	1.428(15)	1.426(13)	C(5')-C(12')	1.526(13)	1.529(10)
C(3)-C(4)	1,410(17)	1.392(15)	C(6')C(7')	1,390(16)	1.378(12)
C(4)-C(5)	1.433(16)	1.412(15)	C(7')-C(8')	1.542(18)	1.532(10)
C(5)-C(6)	1.424(18)	1.406(14)	C(8')C(9')	1,522(16)	1.530(11)
C(6)-C(1)	1,404(19)	1,382(15)	C(8')-C(11')	1,531(16)	1.524(11)
C(3)-C(8)	1.497(15)	1.489(19)	C(9')-C(10')	1,409(16)	1.408(11)
C(6)-C(10)	1.497(20)	1.496(17)	C(11')C(12')	1,361(23)	1.412(11)
C(1)-C(7)/C(2)-C(7)	1.509(21)	1,526(16)	C(8')-C(13')		1.524(13)
C(4)—C(9)/C(5)—C(9)	1.485(27)	1.508(19)	C(6')C(14')	I	1.506(11)
CI0(1)	1.376(17)	1,362(12)	C(10')-C(15')	I	1 497(13)
CI0(2)	1.275(35)	1.368(15)			
ClO(3)	1.332(31)	1.361(14)			
CI0(4)	1.320(58)	1.400(7)			

	тғв	Me ₃ TFB		TFB	МезТГВ	
C(6)-C(1)-C(2)	118,7(10)	122,1(9)	C(6')—C(5')—C(10')	97.1(9)	100,5(6)	
C(1)-C(2)-C(3)	123.1(10)	119.7(9)	C(5')-C(6')-C(7')	113,6(10)	112,6(6)	
C(2)-C(3)-C(4)	118.0(9)	118,1(9)	C(6')-C(7')-C(8')	113.8(10)	114.9(7)	
C(3)-C(4)-C(5)	118,3(9)	121,1(9)	C(7')C(8')C(11')	107.6(10)	110.3(6)	
C(4)-C(5)-C(6)	123,0(10)	120.7(9)	C(7') - C(8') - C(9')	98.6(9)	96.6(6)	
C(5)-C(6)-C(1)	118,2(10)	118,2(9)	C(9')-C(8')-C(11')	108.1(10)	107,8(6)	
C(2)-C(3)-C(8)	119.6(10)	122,4(10)	C(8,)-C(0,)-C(10,)	114.3(10)	114.8(6)	
C(4)-C(3)-C(8)	122,4(10)	119,5(10)	C(5')-C(10')-C(9')	112,8(10)	111.2(6)	
C(1)-C(6)-C(10)	122,6(13)	120,2(10)	C(1')-C(11')-C(8')	123.7(13)	130.0(7)	
C(5)-C(6)-C(10)	119.2(13)	121.6(10)	C(8')-C(11')-C(12')	113.3(12)	111.9(6)	
C(2)-C(1)-C(7)/C(1)-C(2)-C(7)	117,0(10)	121,2(9)	C(1')-C(11')-C(12')	123.0(14)	117.8(7)	
C(6)-C(1)-C(7)/C(3)-C(2)-C(7)	124,3(11)	118,9(9)	C(5')-C(12')-C(11')	115.8(12)	114.0(6)	
C(3)-C(4)-C(9)/C(4)-C(5)-C(9)	123.8(12)	117,4(10)	C(4')-C(12')-C(11')	120.9(13)	120.1(7)	
C(5) - C(4) - C(9)/C(6) - C(5) - C(9)	117.9(12)	121,8(10)	C(4')-C(12')-C(5')	123,3(13)	125.7(7)	
C(11))-C(1))-F(1)	122,5(16)	121,8(7)	C(11')-C(8')-C(13')	I	117.2(7)	
C(2')-C(1')-F(1)	122,6(18)	117.1(7)	C(7')-C(8')-C(13')	I	112.0(7)	
C(2')-C(1')-C(11')	114.9(18)	121,1(7)	C(9')-C(8')-C(13')	I	111.0(7)	
C(1,)C(2,)F(2)	116.5(20)	119,6(8)	C(5')-C(6')-C(14')	i	118.6(7)	
C(1')C(2')C(3')	123.1(23)	120,1(8)	C(7')—C(6')—C(14')	I	125,1(7)	
C(3')-C(2')-F(2)	120,4(22)	120,3(8)	C(9')-C(10')-C(15')	i	126.3(7)	
C(2')C(3')F(3)	121.7(22)	118,1(8)	C(5')-C(10')-C(15')	1	119.5(7)	
C(2')-C(3')-C(4')	122,4(22)	119,0(8)	0(1)0(2)	109.9(18)	112.0(8)	
C(4')C(3')F(3)	115.8(20)	122.9(8)	0(1)-0(3)	114.0(18)	106,6(9)	
C(3')C(4')F(4)	119.8(17)	117.9(8)	0(1)-0(4)	115.6(21)	110,0(8)	
C(3')C(4')C(12')	115,7(17)	121,8(8)	0(2)-01-0(3)	117.3(26)	106,9(8)	
C(12')-C(4')-F(4)	124,5(15)	120.3(8)	0(2)010(4)	92.7(29)	111,5(7)	
C(10,)-C(6,)-C(12,)	107,9(10)	106.4(6)	0(3)-01-0(4)	105,7(33)	109,7(8)	
C(6')—C(5')—C(12')	107,9(10)	110,6(6)				

TABLE 3 (cont.)

Fig. 3. The puckering of the arene rings in the TFB (above) and Me_3TFB (below) compounds, to show the different conformations and the angular deviations of the atoms of the cation.

TABLE 4

SELECTED TORSION ANGLES (°)

	TFB	Me3TFB	
6-1-2-3	7.3(15)	2.6(15)	
1-2-3-4	-7.4(15)	4.3(14)	
2345	0.4(14)	1.3(14)	
3-4-5-6	6.8(16)	3.3(15)	
4561	-7.1(16)	4.9(14)	
5-6-1-2	0.0(15)	-2.0(15)	
11'-8'-5'-12'	0.2(9)	0.8(5)	
11'-8'-5'10'	125.1(10)	-121.4(5)	
11'-8'-5'6'	-125.1(9)	126.2(5)	
7'8'5'12'	124.0(9)	-127.6(6)	
7'-8'-5'-10'	-111.0(7)	111.8(6)	
7'8'5'6'	1.2(5)	-0.6(5)	
9'8'5'12'	-124.3(10)	122.3(5)	
9'8'5'10'	0.7(7)	1.7(4)	
9'8'5'6'	110.5(6)	-110.7(5)	
5'6'7'8'	2.3(14)	1.2(9)	
6'7'8'9'	58.1(11)	60.3(8)	
7'8'9'10'	58.7(12)	-61.1(8)	
8'9'10'5'	1.2(14)	3.1(9)	
9'10'5'6'	-60.9(11)	58.3(7)	
10'-5'-6'-7'	61.8(11)	59.9(8)	
5'6'7'8'	-2.3(14)	-1.2(9)	
6'7'8'11'	54.1(13)	-51.4(9)	
7'8'11'12'	53.1(14)	51.7(8)	
8'-11'-12'-5'	0.3(17)	-1.5(9)	
11'-12'-5'-6'	51.6(15)	-51.1(9)	
12'-5'-6'-7'	-49.6(13)	52.1(9)	
5'10'9'8'	1.2(14)	3.1(9)	
10'—9'—8'—11'	53.1(13)	52.6(8)	
9'-8'-11'-12'	52.5(14)	-52.6(8)	
8'-11'-12'-5'	0.3(17)	-1.5(9)	
11'-12'-5'-10'	-52.3(15)	57.2(8)	
12'-5'-10'-9'	50.5(13)	-57.1(8)	

FINAL AD	UMIC COORDINATES P		·4	
Atom	x	У	Z	
 Rh	0,45812(1)	-0.03212(1)	0.25000(0)	
C(1)	0.36126(4C)	-0.10719(42)	0.28181(50)	
C(2)	0.36581(43)	0.08769(43)	0.20268(57)	
C(3)	0.40354(37)	0.09324(35)	0.14580(44)	
C(4)	0.44300(42)	0.11266(35)	0.17190(57)	
C(5)	0.44274(44)	0.12605(37)	0.25375(69)	
C(6)	0.40032(52)	-0.12675(43)	0.30803(52)	
C(7)	0.31626(59)	-0.10232(72)	0.33347(100)	
C(8)	0.40252(78)	0.07528(65)	0.06236(65)	
C(9)	0.48711(80)	-0.11707(78)	0.12027(157)	
C(10)	0.39939(135)	-0.14745(91)	0.39056(93)	
C(1')	0.62748(59)	0.19229(57)	0.22049(151)	
F(1)	0.64143(46)	0.20020(42)	0,14459(105)	
C(2')	0.65778(71)	0.23725(65)	0,27635(231)	
F(2)	0.70168(43)	0.28995(32)	0.24945(113)	
C(3')	0.64405(80)	0.23002(74)	0.35191(194)	
F(3)	0.67516(47)	0.27424(43)	0.40503(113)	
C(4')	0.59872(57)	0.17470(57)	0.38333(125)	
F(4)	0.58710(52)	0.17009(50)	0.45818(80)	
C(5')	0.51943(43)	0.06550(46)	0.35174(72)	
C(6')	0.53706(40)	0.02068(41)	0.31821(65)	
C(7')	0.55271(38)	0.02974(40)	0.23909(71)	
C(8')	0.54663(45)	0.08082(44)	0.20118(76)	
C(9')	0.48043(43)	0,05693(38)	0.21768(63)	
C(10')	0.46503(43)	0.04780(43)	0.29802(69)	
C(11')	0.58288(43)	0.13715(43)	0.25114(101)	
C(12')	0.56820(46)	0.12855(46)	0.32877(89)	
Cl	0.29653(10)	0.03257(10)	0.18895(14)	

FINAL ATOMIC	COORDINATES 1	FOR [Rh(du	(TFB)[ClO4

closer to the rhodium atom. It is noteworthy that with the sole exception of $[Rh(durene)(Me_3TFB)]ClO_4$, in all the complexes of the type $[Rh(C_6H_{6-x}Me_x)-(diolefin)]ClO_4$ the diolefin is not situated opposite to the substituted carbon atoms, which have a relatively lower π -electron density. In other words, the slight tendency of the coordinated arene to depart from planarity seems to be related to the π -electron density of the arene ring and to the tendency of rhodium(I) to achieve square-planar coordination.

0.09220(61)

0.00228(101)

0.01175(149)

0.01775(200)

0.19016(123)

0.15335(344)

0.25792(122)

0.13744(200)

The reason for the different disposition of the $[Rh(durene)(Me_3TFB)]ClO_4$ is not clear, but steric interaction cannot be excluded. There is no isomorphism with the related $[Rh(1,4-C_6H_4Me_2)(Me_3TFB)]ClO_4$ derivatives [1] although pseudoisomorphism is observed for the $[Rh(durene)(TFB)]ClO_4$ complex and all the $[Rh(arene)(TFB)]ClO_4$ complexes previously reported [2].

The rhodium distances to the best least squares plane through the durene ring is shorter for the TFB complex than for the Me₃TFB analogue (Fig. 2), as previously observed in [Rh(1,4-C₆H₄Me₂)(diolefin)]ClO₄ (diolefin = TFB or Me₃TFB) complexes, in spite of the higher lability in solution of the rhodium—

0(1)

0(2)

0(3)

0(4)

0.31270(105) 0.24662(118)

0.30274(206)

0.32525(242)

TABLE 5

TABLE 6

Atom	x	у	2	
Rh	0.27228(3)	0.24690(7)	0.04720(2)	
C(1)	0.12399(74)	0.36975(82)	0.01658(67)	
C(2)	0.13172(69)	0.32051(78)	0.09464(61)	
C(3)	0.12628(74)	0.19794(84)	0,10268(63)	
C(4)	0.12071(71)	0.13048(76)	0,03287(63)	
C(5)	0.11816(78)	0.18182(84)	0,04420(63)	
C(6)	0.11550(71)	0.30279(87)	-0.05317(61)	
C(7)	0.13721(84)	0.39600(101)	0.17037(71)	
C(8)	0,12928(122)	0.14071(143)	0,18292(89)	
C(9)	0,11176(106)	0.10198(144)	0,11655(87)	
C(10)	0.10339(113)	0.35894(126)	0.13548(76)	
C(1')	0.67639(50)	0.11574(71)	0.16790(45)	
C(2')	0.77499(65)	0.17036(87)	0,17755(54)	
C(3')	0.78019(63)	0.27912(71)	0,14431(56)	
C(4')	0.68637(67)	0.33050(71)	0,10175(54)	
C(5')	0.47839(59)	0.33288(65)	0.05173(45)	
C(6')	0.40917(45)	0.24905(87)	0.00879(34)	
C(7')	0.40056(61)	0.14231(69)	0.02583(45)	
C(8')	0.46352(59)	0.13014(65)	0.11598(45)	
C(9')	0.40407(50)	0.22646(63)	0.15011(42)	
C(10')	0.41420(59)	0.33727(67)	0.11783(45)	
C(11')	0.58122(59)	0.16808(65)	0.12624(44)	
C(12')	0.58853(59)	0.27878(63)	0.09228(45)	
C(13')	0.44428(89)	0.01305(84)	0.15187(76)	
C(14')	0.39246(84)	0.27192(93)	0.09965(52)	
C(15')	0.40083(82)	0.45037(84)	0,15787(63)	
F(1)	0.67686(39)	0.01023(43)	0.20269(28)	
F(2)	0,86578(38)	0.11817(47)	0.22025(32)	
F(3)	0.87816(38)	0,32978(54)	0.15579(40)	
F(4)	0.69367(41)	0,43685(45)	0.06972(37)	
Cl	0.80130(16)	0.23602(25)	-0.08195(63)	
0(1)	0.85317(91)	0,33600(95)	-0.05224(100)	
O(2)	0.83776(82)	0.19246(122)	-0,14644(56)	
O(3)	0.82702(118)	0,15699(109)	0.01992(71)	
0(4)	0.68861(56)	0.25384(99)	-0.10371(54)	

FINAL ATOMIC COORDINATES FOR [Rh(durene)(Me₃TFB)]ClO₄

TABLE 7

PUCKERING COMPARISON OF THE ARENE DISTRIBUTIONS (q_2, q_3 and Q values in \hat{A}, ϕ and θ in (°))

Compound	Cremer and Pople found parameters (n being any integer)					
	<i>q</i> 3	q2	ψ2	θ	Q	
Theoretical Boat	0	92	0+60.n	90	92	
Theoretical Skew	0	q ₂	30+60.n	90	<i>q</i> ₂	
[Rh(durene)(TFB)]ClO4	-0.002	0.086	241.5	91.0	0.086	
[Rh(C6H4Me2)(TFB)]ClO4	0.016	0.077	242.9	79.0	0.078	
[Rh(C ₆ H ₃ Me ₃)(TFB)]ClO ₄	-0.022	0.072	229.0	106.9	0.075	
[Rh(C6Me6)(TFB)]ClO4	0.000	0.073	331.4	90.3	0.073	
[Rh(durene)(Me3TFB)]ClO4	0.003	0.050	81.3	93.0	0.050	
[Rh(C ₆ H ₄ Me ₂)(Me ₃ TFB)]ClO ₄	0.003	0.087	81.8	92.2	0.087	

.

	OLEFINIC C-C DISTANCES FOR [Rh(arene)(diolefin)]Cl	D_4 COMI	PLEXES
A			

Compound	Olefinic C—C distances (Å) with σ 's	Reference
Free TFB ligand	1.302(4), 1.306(5)	[14]
[Rh(durene)(TFB)]ClO ₄	1.390(16), 1.409(16)	This work
[Rh(C6H4Me2)(TFB)]ClO4	1.409(18), 1.423(14)	[2]
[Rh(C6H3Me3)(TFB)]ClO4	1.332(26), 1.399(19)	[2]
[Rh(C6Me6)(TFB)]ClO4	1.381(21), 1.423(18)	[2]
[Rh(durene)(Me3TFB)]ClO4	1.378(12), 1.408(11)	This work
[Rh(C ₆ H ₄ Me ₂)(Me ₃ TFB)]ClO ₄	1.388(11), 1.390(12)	[1]

arene bond in TFB derivatives [1]. These rhodium—arene distances seem to be related to the ancillary ligand and increase in the order: TFB (1.81–1.83 Å) [2] < Me₃TFB (1.83–1.84 Å) [1] < P-donor ligands (1.86–1.88 Å) [3,5,6,8].

A significant increase of the olefinic C—C distances compared with those in the free ligand is observed for $[Rh(durene)(TFB)]ClO_4$, as well as for other related derivatives [1,2]. Various lengths of the olefinic C—C bonds is observed in the complexes shown in Table 8.

Acknowledgement

We thank Prof. Dr. L.M. Venanzi (E.T.H. Zürich) for valuable discussions.

References

- 1 R. Usón, L.A. Oro, C. Foces-Foces, F.H. Cano, S. García-Blanco and M. Valderrama, J. Organometal. Chem., 229 (1982) 293.
- 2 R. Usón, L.A. Oro, C. Foces-Foces, F.H. Cano, A. Vegas and M. Valderrama, J. Organometal. Chem., 215 (1981) 241.
- 3 J.M. Townsend and J.F. Blount, Inorg. Chem., 20 (1981) 269.
- 4 M.R. Thompson, C.S. Day, V.W. Day, R.I. Mink and E.L. Muetterties, J. Amer. Chem. Soc., 102 (1980) 2979.
- 5 R. Usón, P. Lahuerta, J. Reyes, L.A. Oro, C. Foces-Foces, F.H. Cano and S. García-Blanco, Inorg. Chim. Acta, 42 (1980) 75.
- 6 P. Albano, M. Aresta and M. Manassero, Inorg. Chem., 19 (1980) 1069.
- 7 J. Halpern, D.P. Riley, A.S.C. Chan and J.J. Pluth, J. Amer. Chem. Soc., 99 (1977) 8055.
- 8 M.J. Nolte and G. Gafner, Acta Cryst. B, 30 (1974) 738.
- 9 D.M. Roe and A.G. Massey, J. Organometal. Chem., 28 (1971) 273.
- 10 J.M. Stewart, F.A. Kundell and J.C. Baldwin, The X-ray System. Computer Science Center, Univ. of Maryland, College Park, Maryland, 1970.
- 11 International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, 1974.
- 12 S.C. Abrahams and E.T. Keve, Acta Cryst. A, 27 (1971) 157.
- 13 D. Cremer and J.A. Pople, J. Amer. Chem. Soc., 97 (1975) 13.
- 14 M.J. Hamor and T.A. Hamor, Acta Cryst. B, 35 (1979) 1377.

TABLE 8